辦公室裡面,當韓華問出這句話的時候,王東來就知道他是認可了這篇論文的質量。

“導師,這篇論文確實是我親自寫的,英文版還是我昨晚才翻譯過來的。”

王東來神情自信,無比認真地對韓華說道。

“不好意思,這篇論文的質量很高,我只是有些不相信會是一個剛入學的新生寫出來。”

韓華略有一絲歉意地對王東來說完之後,便開啟了瀏覽器中的查重網站,開始查重起來。

他其實並不怎麼相信這會是一個新生能夠寫出來的論文。

條理清晰,邏輯嚴謹,資料明確,行文簡潔。

哪怕是大四學生寫出這樣的論文,想要寫出這樣一篇論文來,也需要天分和足夠多的汗水,才能打磨到這個程度。

而王東來呢?

不過是一個才入學的大一新生,除去軍訓的兩個周,真正學習的時間也不過一個多星期而已。

滿打滿算,在唐都交大上的課,超不過五十節。

結果就是這樣的新生,就能寫出這樣的論文,韓華第一反應就是要麼抄襲剽竊,要麼就是請人代筆。

心裡閃過種種猜測,查重網站的結果也出來了。

重複率0.7%。

這個結果出來,起碼證實了這篇論文並沒有剽竊抄襲,韓華心裡鬆了一口氣。

而接下來,最大的可能就是請人代筆。

“王東來,我認真問你,你老老實實告訴我,這篇論文真的是你一個人寫的嗎?沒有人給你提供過大綱,或者是一些必要的幫助嗎?”

韓華看著王東來,原本想要問的直接點,但是話到嘴邊還是委婉了兩分。

王東來如何聽不出來韓華的話中之意。

看到韓華一臉認真嚴肅地看著自己,等著自己的回答。

王東來笑了,充滿自信,神采飛揚。

“確實是我一個人寫的,就在圖書館寫出來的,英文版是回到宿舍之後才翻譯的。”

“嗯,既然是你寫的論文,那我便問問你論文裡面的內容,你應該沒有問題吧?”韓華再次問道。

要是一般的學生,韓華早就不管了,但是王東來卻是‘錢學森實驗班’的學生,學校對於這個實驗班裡的學生極為看重,調撥不少的資源,就是為了培養這些學生。

韓華也希望王東來是真正的天才,心裡也抱有一絲渺茫的希望,所以就想到了這麼一個辦法。

如果這篇論文真的是王東來寫出來的話,那麼王東來肯定對於論文裡面的內容瞭若指掌。

相反,如果他對於自己提出來的問題,都無法回答,那就證明王東來的論文有問題,根本不是出自他手。

“導師,您請問。”

王東來並不覺得韓華這麼做,是看不上自己,或者是對自己有意見。

設身處地想想,王東來完全能夠理解韓華的行為。

一個剛上大學幾天的新生,就說自己要發表論文,還拿出了專業性這麼強的論文,不是什麼學術垃圾,第一反應自然是不信。

“好,你在論文提到的對稱加密演算法AES和非對稱加密演算法RSA,你詳細講一講,可以嗎?”韓華雖然是數學系的教授,可是對於計算機也有不淺的瞭解,所以就問出了這個問題。

王東來沒有絲毫的猶豫,張口便解釋了起來。

“AES是AdvancedEncryptionStandard的縮寫,是最常見的對稱加密演算法。AES在密碼學中又稱Rijndael加密法,是白頭鷹聯邦政府採用的一種區塊加密標準。

“它的加密公式為C=E(K,P),其中K為金鑰,P為明文,C為密文。

“加密過程是首先對明文進行分組,每組的長度都是128位,然後一組一組地加密,直到所有明文都已加密。金鑰的長度可以是128、192或256位。

“在加密函式E中,會執行一個輪函式,除最後一次執行不同外,前面幾輪的執行是相同的。以AES-128為例,推薦加密輪數為10輪,即前9輪執行的操作相同,第10輪執行的操作與前面不同。不同的金鑰長度推薦的加密輪數是不一樣的……

“加密時明文按照128位為單位進行分組,每組包含16個位元組,按照從上到下、從左到右的順序排列成一個4×4的矩陣,稱為明文矩陣。AES的加密過程在一個大小同樣為4×4的矩陣中進行,稱為狀態矩陣,狀態矩陣的初始值為明文矩陣的值。每一輪加密結束後,狀態矩陣的值變化一次。輪函式執行結束後,狀態矩陣的值即為密文的值,從狀態矩陣得到密文矩陣,依次提取密文矩陣的值得到128位的密文。

“以128位金鑰為例,金鑰長度為16個位元組,也用4×4的矩陣表示,順序也是從上到下、從左到右。AES透過金鑰編排函式把金鑰矩陣擴充套件成一個包含44個字的金鑰序列,其中的前4個字為原始金鑰用於初始加密,後面的40個字用於10輪加密,每輪使用其中的4個字。金鑰遞迴產生規則如下:

“如果i不是4的倍數,那麼由等式w[i]=w[i-4]⊕w[i-1]確定;

“如果i是4的倍數,那麼由等式w[i]=w[i-4]⊕T(w[i-1])確定;

“加密的第1輪到第9輪的輪函式一樣,包括4個操作:位元組代換、行位移、列混合和輪金鑰加。最後一輪迭代不執行列混合。另外,在第一輪迭代之前,先將明文和原始金鑰進行一次異或加密操作。

“解密過程仍為10輪,每一輪的操作是加密操作的逆操作。由於AES的4個輪操作都是可逆的,因此,解密操作的一輪就是順序執行逆行移位、逆位元組代換、輪金鑰加和逆列混合。同加密操作類似,最後一輪不執行逆列混合,在第1輪解密之前,要執行1次金鑰加操作。

AES加密的輪函式操作包括位元組代換SubBytes、行位移ShiftRows、列混合MixColumns、輪金鑰加AddRoundKey等等,每一個的步驟都是緊密相連。”

“……”

“至於非對稱加密演算法RSA,則是1977年三位數學家Rivest、Shamir和Adleman設計了一種演算法,可以實現非對稱加密,使用非對稱加密演算法需要生成公鑰和私鑰,使用公鑰加密,使用私鑰解密。”

“……”

王東來說的滔滔不絕,簡單清楚又明瞭,一看就知道是真的瞭解這些內容。

韓華在心裡其實也逐漸相信起這篇論文是王東來自己寫出來的,不過還是挑了幾個問題問了起來,“什麼是互質關係?”

這個問題很簡單,只要看過書都能知道,但是根據課程,王東來還沒有學過。

“質數(primenumber)又稱素數,有無限個。一個大於1的自然數,除了1和它本身外,不能被其他自然數整除,換句話說就是該數除了1和它本身以外不再有其他的因數;否則稱為合數,如果兩個正整數,除了1以外,沒有其他公因子,我們就稱這兩個數是互質關係。互質關係不要求兩個數都是質數,合數也可以和一個質數構成互質關係。”

王東來迅速地回答出來。

韓華緊接著問道:“那你再說說尤拉函式。”

“尤拉函式是指對正整數n,尤拉函式是小於n的正整數中與n互質的數的數目,用φ(n)表示。”

“例如φ(8)=4,因為1357均和8互質。”

“若n是質數p的k次冪,除了p的倍數外,其他數都跟n互質,則數學公式為……”

“若m,n互質,則數學公式為……”

“當n為奇數時,則數學公式為……”

“當n為質數時,則數學公式為……”

對答如流,完全不像是一個剛入學的大一新生,其流利程度在韓華看來,已經不弱於一些大三學生了。

在辦公室裡面的三位學長,這個時候也停下了手上的動作,認真地聽著王東來和鵝韓華的一問一答。

“模反元素。”

“如果兩個正整數a和n互質,那麼一定可以找到整數b,使得ab-1被n整除,或者說ab被n除的餘數是1。這時,b就叫做a的‘模反元素’。”

“比如3和11互質,那麼3的模反元素就是4,因為(3×4)-1可以被11整除。顯然,模反元素不止一個,4加減11的整數倍都是3的模反元素{…,-18,-7,4,15,26,…},即如果b是a的模反元素,則b+kn都是a的模反元素。”

“那尤拉定理呢?”

“尤拉定理是一個關於同餘的性質。尤拉定理表明,若n,a為正整數,且n,a互質,則有a^φ(n)≡1(modn)。”

“假設正整數a與質數p互質,因為φ(p)=p-1,則尤拉定理可以寫成a^(p-1)≡1(modp)。”

等王東來說完之後,韓華下意識地鼓起掌來。

“好好好,我確實沒想到你會給我這麼大的驚喜。”

“先前,你的論文質量很高,我以為不是你寫的,所以才這麼問你,想看看你究竟懂不懂,倒是沒想到你給了我這麼大的一個驚喜。”

“你的論文沒有問題,論證的過程也很完美,只不過就是有些排版上的小問題以及引用文獻時的錯誤,這些都是小問題,稍微改一下就是了。”

“只不過,你知道你這篇論文真正的價值嗎?”

韓華說完之後,便靜靜地看著王東來,等著他的回答。